Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Offshore wind energy development on the Mid‐Atlantic Bight (MAB) portion of the Northwestern Atlantic continental shelf could have adverse impacts on the future of the Atlantic surfclam,Spisula solidissima, fishery. The current and potential future areas designated for offshore wind energy development overlap with the present‐day and projected Atlantic surfclam fishing grounds and so could limit the fishery. Fishery impacts imposed by displacement of fishing outside wind farm areas and possible restrictions on vessel transit through the wind farms were simulated using a spatially explicit fishery model. The distribution of catch, hours fished, landings per unit effort (LPUE), time at sea, fishing mortality, and the number of fishing trips were projected for five time periods encompassing the period of 2016–2055. Simulations showed a significant decline in the mean of all fishery metrics (apart from LPUE) as the area of wind farm restrictions increased in scale. Impacts were consistently larger when vessel transit through and fishing within offshore wind areas were prohibited. Impacts were also larger for MAB regions off New Jersey and Delmarva than regions farther north and east. These simulations highlight the necessity of evaluating future conditions as warming temperatures shift the surfclam range relative to the immobile wind farm locations. The offshore wind industry must consider projected long‐term impacts of developmental expansion on surrounding sedentary benthic species and the commercially important fisheries that rely on them.more » « lessFree, publicly-accessible full text available December 22, 2025
-
ABSTRACT Taphonomic indicators are often used to assess time-since-death of skeletal remains. These indicators frequently have limited accuracy, resulting in the reliance of other methodologies to age remains. Arctica islandica, commonly known as the ocean quahog, is a relatively widespread bivalve in the North Atlantic, with an extended lifespan that often exceeds two hundred years; hence, their shells are often studied to evaluate climate change over time. This report evaluates taphonomic age using 117 A. islandica shells collected from the Mid-Atlantic Bight offshore of the Delmarva Peninsula with radiocarbon dates extending from 60–4,400 cal years BP. These shells had varying degrees of taphonomic alteration produced by discoloration and degradation of periostracum. To determine if a relationship exists between taphonomic condition and time-since-death, radiocarbon ages were compared with the amount of remaining periostracum and type of discoloration. Old shells (individuals that died long ago) were discolored orange with no periostracum while younger shells (individuals that died more recently) had their original color, with some periostracum. Both the disappearance of periostracum and appearance of discoloration followed a logistic process, with 50% of shells devoid of periostracum and 50% discolored in about 1,000 years. The logistic form of long-term taphonomic processes degrading shell condition is first reported here, as are the longest time series for taphonomic processes in death assemblages within the Holocene record. This relationship can be utilized for triage when deciding what shells to age from time-averaged assemblages, permitting more efficient application of expensive methods of aging such as radiocarbon dating.more » « less
An official website of the United States government
